StatEcoNet: Statistical Ecology Neural Networks for Species Distribution Modeling

نویسندگان

چکیده

This paper focuses on a core task in computational sustainability and statistical ecology: species distribution modeling (SDM). In SDM, the occurrence pattern of landscape is predicted by environmental features based observations at set locations. At first, SDM may appear to be binary classification problem, one might inclined employ classic tools (e.g., logistic regression, support vector machines, neural networks) tackle it. However, wildlife surveys introduce structured noise (especially under-counting) observations. If unaccounted for, these observation errors systematically bias SDMs. To address unique challenges this proposes framework called StatEcoNet. Specifically, work employs graphical generative model ecology serve as skeleton proposed carefully integrates networks under framework. The advantages StatEcoNet over related approaches are demonstrated simulated datasets well bird data. Since SDMs critical for ecological science natural resource management, offer boosted analytical powers wide range applications that have significant social impacts, e.g., study conservation threatened species.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Designing neural networks for modeling biological data: a statistical perspective.

In this paper, we propose a strategy for the selection of the hidden layer size in feedforward neural network models. The procedure herein presented is based on comparison of different models in terms of their out of sample predictive ability, for a specified loss function. To overcome the problem of data snooping, we extend the scheme based on the use of the reality check with modifications ap...

متن کامل

modeling loss data by phase-type distribution

بیمه گران همیشه بابت خسارات بیمه نامه های تحت پوشش خود نگران بوده و روش هایی را جستجو می کنند که بتوانند داده های خسارات گذشته را با هدف اتخاذ یک تصمیم بهینه مدل بندی نمایند. در این پژوهش توزیع های فیزتایپ در مدل بندی داده های خسارات معرفی شده که شامل استنباط آماری مربوطه و استفاده از الگوریتم em در برآورد پارامترهای توزیع است. در پایان امکان استفاده از این توزیع در مدل بندی داده های گروه بندی ...

compare learning function in neural networks for river runoff modeling

accurate prediction of river flow is one of the most important factors in surface water recourses management especially during floods and drought periods. in fact deriving a proper method for flow forecasting is an important challenge in water resources management and engineering. although, during recent decades, some black box models based on artificial neural networks (ann), have been develop...

متن کامل

Artificial Neural Networks as Statistical Tools in SAR/QSAR Modeling

There are two broadly-defined applications of artificial neural networks (ANNs) in SAR/QSAR modeling. The first is the use of networks as preprocessors to reduce the dimensionality of chemical descriptors for use in statistical or network models. The second is to create classification models for predictive toxicology. This report discusses the use of ANNs as classifiers in SAR/QSAR modeling and...

متن کامل

Distribution Systems Reconfiguration Using Pattern Recognizer Neural Networks

A novel intelligent neural optimizer with two objective functions is designed for electrical distribution systems. The presented method is faster than alternative optimization methods and is comparable with the most powerful and precise ones. This optimizer is much smaller than similar neural systems. In this work, two intelligent estimators are designed, a load flow program is coded, and a spe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence

سال: 2021

ISSN: ['2159-5399', '2374-3468']

DOI: https://doi.org/10.1609/aaai.v35i1.16129